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We study the block spin transformation for the 2D Ising model at the critical 
temperature T c. We consider the model with the constraint that the total spin 
in each block is zero. An old argument by Cassandro and Gallavotti strongly 
supports the Gibbsianness of the transformed measure, provided that such 
model has a critical temperature T' c lower than T c. After describing a possible 
rigorous approach to the problem, we present numerical evidence that indeed 
T'c < 7",. and study the Dobrushin-Shlosman uniqueness condition. 
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1. I N T R O D U C T I O N  

In this pape r  we discuss the b lock  spin t r a n s f o r m a t i o n  for the t w o - d i m e n -  

s ional  Is ing m o d e l  at the cri t ical  point ,  t ry ing to show that  it is well defined 

and  gives rise to a G ibbs  measu re  c o r r e s p o n d i n g  to a t r ans la t iona l ly  

invar ian t  finite n o r m  potent ia l .  I f  one  wants  to define the r e n o r m a l i z a t i o n  

g r o u p  f low in the space of  H a m i l t o n i a n s  this is of  course  an  essent ial  point .  

Here  we s tudy only  the first step of  this flow. S imi la r  results,  based on  a 
compute r -a s s i s t ed  proof,  have  been ob t a ined  by K e n n e d y  1~4) for the 

ma jo r i t y  rule r e n o r m a l i z a t i o n  g r o u p  t r ans fo rmat ion .  
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Our aim would be to use a rigorous approach to the subject, but, as 
will appear clear in the sequel, this is presently a very difficult task. 
Hence we will mainly analyze the problem from a numerical point of view. 
However, as we will explain, this will be partially achieved by combining 
theoretical perfectly rigorous ideas with numerical tools in order to 
"measure " via a computer some interesting theoretical quantities. 

The problem of considering well-defined renormalization group trans- 
formations (RGT) and, in particular, the study of RGT in the framework 
of the modern rigorous approach to statistical mechanics, has attracted the 
attention of several authors. 

Recent and less recent papers have been dedicated to this subject. We 
want to quote in particular, among the "old" papers, one by Cassandro 
and Gallavotti t2~ (which, to our knowledge, is, together with ref. 9, one of 
the first attempts to explicitly treat the above-mentioned problem), a paper 
by Girffiths and Pearce, tj~ and one by Israel. 113~ For recent results we 
quote the monumental paper by van Enter et aL, ~7~ where the problem 
is discussed in a very clear and complete way. This book-length article 
includes very interesting discussions and examples. It contains a self- 
contained exposition of the general setup and a very extensive and up-to- 
date bibliography. Thus we refer the interested reader to ref. 7 for a review 
on the subject and for reference to other recent papers. 

It is worthwhile to remark that the majority of the examples con- 
sidered in the above papers concerning the rigorous approach to RGT deal 
with the region far (and often very far) from the critical point. In some 
sense, ref. 2 constitutes an exception and some crucial ideas developed in 
the present paper go back, in fact, to that work. 

In the following section we present a general critical discussion about 
the definition of RGT. In Section 3 we give the definitions concerning the 
models considered in this paper and the Monte Carlo procedure used to 
study their equilibrium properties. Section 4 is devoted to the Dobrushin-  
Shlosman uniqueness condition and to the exact definition of a related 
numerical quantity that we have studied to analyze the RGT (see next sec- 
tion). Sections 5 and 6 contain the numerical results and, finally, Section 7 
is devoted to the conclusions. 

2. A CRITICAL D ISCUSSION A B O U T  THE RGT 

The main question arising when rigorously discussing the RGT can be 
explained by considering, for example, the Ising model at magnetic field h 
and inverse temperature ft. Let 

v = T i~ l~ l~ .h  
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be a measure arising from the application of a renormalization group 
transformation Tcb ), defined "on scale b," to the Gibbs measure Pa.h of the 
Ising model. Transformations of this kind are always trivially defined in 
finite volume, but, of course, we are interested in taking the thermo- 
dynamic limit or, rather, in defining directly the transformation in the 
infinite-volume situation. 

The main "pathology" that can take place, which is the main part of 
the discussions contained in ref. 7, is that v can be non-Gibbsian. This 
means that the conditional probabilities of v can be incompatible with the 
Gibbs prescription corresponding to any absolutely summable potential. 
This non-Gibbsianness is detected via the violation of a necessary condi- 
tion, namely the property of quasilocality for the conditional probabilities 
ofv, 

The Dobrushin-Landord-Ruelle  (DLR) theory of Gibbs measures is 
based on the conditional probabilities nA for the behavior of the system in 
a finite box A c c  Z a, subject to a specific configuration in the complement 
of A (we use the notation A c c  Z a to denote a finite subset A of za).  For 
simplicity let us only consider Ising-like systems. The configuration space 
of the system in this case is g'2= { - 1 ,  1}ze; we use f2~ = { - 1 ,  1} A to 
denote the configuration space in A c Z a. According to ref. 7, a probability 
measure whose conditional probabilities {hA } A == ze satisfy 

lim sup In,lf(col)--nAf(co2) I = 0  (1) 
A '  T Z d m l ,  r E f2 : ( m l  LI '  = (m2)A '  

(namely the conditional expectations in A of any cylindrical function f 
corresponding to different boundary conditions co l, c%, coinciding in 
A ' ~ A ,  tend to coincide as A' tends to Z a) is called quasiloeal. Condi- 
tion ( l)  can be seen as a continuity property in the conditioning, infinite- 
volume, configuration co. 

Kozlov ~ls~ has shown that a quasilocal probability measure on t'2 
which also satisfies a so-called nonnullio, condition, i.e., a sort of absence 
of hard-core exclusion, is Gibbsian, in the sense that its conditional proba- 
bilities can be obtained, via the Gibbs prescription, from an absolutely 
summable potential (see ref. 7 for more details). 

It is useful to make at this point some remarks about this notion of 
quasilocality. 

1. Kozlov's theorem (i.e., the fact that nonnullness together with 
quasilocality imply Gibbsianness) is proved in ref. 15 by using an approach 
which can be considered somehow artificial. Starting only from some nice 
continuity properties of the conditional probabilities {hA}, one gets a 
series, representing the interaction of a point x with the rest of the world, 
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which is a priori only semiconvergent. One can insist on extracting the 
many-body potentials from that series (for instance, via the Moebius inver- 
sion formula) pretending that they are absolutely summable. This can be 
achieved only by regrouping the terms in some suitable order. One can use, 
for instance, the lexicographic order of the lattice. The resummation will 
depend in this case on the location of x. The potential will be absolutely 
summable, but, in general, not translationally invariant. To get translation 
invariance one needs some stronger properties on how weakly the condi- 
tional probabilities depend on far apart configurations. 

In some situations to compute the renormalized potentials one can use 
much stronger methods, based on convergent cluster expansions; in this 
way a genuine finite-norm, translationally-invariant potential is produced 
in a very natural way. Each renormalized coupling constant is expressed via 
a convergent series (see, as an example, Cammarota) .  I~l 

2. The above notion of quasilocality of a measure # needs a control 
uniform in the conditioning configuration. To prevent the existence of a 
Gibbs potential it is sufficient that the condition is violated for only one 
special configuration; in this case even the somehow artificial quantity 
introduced in ref. 15 cannot be constructed. However, for any reasonable 
infinite-volume stochastic field #, a single infinite-volume configuration o9 is 
of zero measure; moreover, it can even happen (see below) that the single 
configuration inducing non-Gibbsianness, as a consequence of nonquasilo- 
cality, is very "nontypical" with respect to p. It is then natural and physi- 
cally relevant to introduce a weaker notion of quasilocality, for instance, by 
requiring the validity of a condition like (1) only for/~-almost all oYs. 

A precise definition in this sense has been recently introduced by 
Fernandez and Pfister, tS) but this does not prevent the construction of 
pathological examples. In fact those authors show that, for some interesting 
examples, a very strong notion of nonquasilocality holds, in the sense that 
(1) actually fails for #-almost all configurations co. 

This happens, for instance, for the example of non-Gibbsianness given 
by SchonmannJ 241 This example consists simply in considering the 
relativization v of the measure/~ + for the Ising model in two dimensions to 
the line l = { x -  (x~, x2) �9 Z 2 : x2 = 0 } (isomorphic to the one-dimensional 
lattice Zt). Here we are at large inverse temperature fl and zero magnetic 
field; #+ is one of the two extremal Gibbs measures, the one obtained via 
a thermodynamic limit with + boundary conditions; finally, by relativiza- 
tion of/~ + to l we simply mean the projection on the a-algebra generated 
by the spins in / or, simply, the (marginal) distribution of the spins in l 
deduced by/~+ by integrating out all the spins in Z2\L 
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3. There are many cases in which a stochastic field p shows up the 
pathology of non-Gibbsianness, as in the Schonmann example; however, at 
the same time, the measure p can be, in many respects, very well behaved. 
For  instance, the one-dimensional measure v of the Sehonmann example 
has exponentially decaying truncated correlations. Moreover,  as has been 
recently shown by Lorinczi and Vande Velde, "6~ even this very strong 
non-Gibbsianness is, in a sense, an unstable property. 

Let us reanalyze the Schonmann example. Suppose that, intead of 
considering the one-dimensional sublattice l, one considers a sublattice I b of 
sufficiently large spacing b. Namely, starting from p +, one integrates out all 
the spins outside the set lh - { x -  (x~, xz) ~ Z 2 : x2 = 0, x I = nb, n ~ Z 1 }, 
obtaining the relativized measure vh on lb. One can also see v b as obtained 
via a decimation procedure on scale b from v. In general, given a measure 

o n / 2  = { - 1, 1 } z,' and an integer b >7 2, the decimation transformation T b 
acts on p so that 

v = T b #  

is simply the relativization of p to the sublattice Z a of Z d with spacing b, 
that is, Z d = {x ~ Z a : x = by, y ~ za}.  Lorinczi and Vande Velde show that 
Vb is Gibbsian in the strong sense, that the renormalized potential can be 
computed via a cluster expansion, and that it is absolutely convergent. 

Another interesting example given in ref. 7 concerns the decimation 
transformation applied to the unique Gibbs measure Pp.h for the Ising 
model at large fl and h # 0, say h > 0. They show that, Vb and for suitable 
/3 and h, the renormalized measure v = ThPe.h arising from a decimation 
transformation with spacing b is not consistent with any quasilocal 
specification. In particular it is not  the Gibbs measure for any uniformly 
convergent interaction. As noticed in ref. 7, the nonexistence of the renor- 
malized interaction is a consequence of the presence of a first-order phase 
transition for the original model in Z a \ Z ~  for particular values of (cox)x~z~ 
and suitable values of h and ft. One example is the case where w , . = -  1 
'v'x, h uniform and positive, exponentially in fl near the value h*(b), which 
is needed to compensate, in z d \ z ~ ,  the effect of the - l 's in Zb u and to give 
rise to a degeneracy in the ground state in Z d \ Z b  u (the highly nontrivial 
part in the proof, given in ref. 7, of the existence of the pathology consists 
in showing, via the Pirogov-Sinai  theory, the persistence of the phase 
transition at positive temperatures). 

On  the other hand, from the above analysis it is clear that this pathol- 
ogy comes from the fact that, on a too short spatial scale b (with respect 
to the thermodynamic parameters and mainly to the magnetic field h), the 
system is reminiscent of the existence of a phase transition for h = 0. It 
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seems reasonable that this pathology could be eliminated provided one 
uses an RG transformation defined on a proper scale depending on the 
thermodynamic parameters. Martinelli and Olivieri ~2~ have shown, exactly 
for the above example of the Ising model for which in ref. 7 the pathology 
is found, that, with the same values of fl and h, provided one chooses a suf- 
ficiently large spacing b ' >  b, the resulting measure Tb'l~B.h is Gibbsian in 
the strong sense and that the renormalized potential, which is absolutely 
summable, can be computed via a convergent cluster expansion. In par- 
ticular, taking b ' =  b", with n sufficiently large, one shows that, iterating n 
times the transformation T b, one goes back to Gibbsian measures; 
moreover, it has also been shown ~2~ that Tb,,It~.l, converges, as n tends to 
oo, to a trivial fixed point. 

Let us now describe an example of pathology discussed in ref. 7 which 
is particularly relevant in the context of the present paper. It refers to the 
block averaging transformation (sometimes called Kadanoff transforma- 
tion). Suppose we partition Z 2 into square blocks B~ of side 2 (each block 
containing 4 sites). The block averaging transformation T~21 consists, in 
this case, in the following transformation applied to the Gibbs measure Pp, h 
for the Ising model at inverse temperature fl and magnetic field h; the new 
measure is obtained, starting from the original spin variables a,., by assign- 
ing to any block B i a n  integer value m~ and by computing the probability, 
with respect to the original Gibbs measure/~.h, of the event ~.,.~ s, a~ = m~. 

One obtains, starting from #r {a.,. } ) 

v({m,})= T~2fl~lJ.h 

The original system of a.,. variables distributed according to Pa, h is called 
the object sys tem,  whereas the new variables mi distributed according to v 
constitute the image system.  

The pathology in the block averaging transformation for the Ising 
model at large inverse temperature fl and arbitrary magnetic field h is a 
consequence of the existence of a phase transition for the object system for 
particular values of the image variable mi. The authors of ref. 7 show that 
for the configuration with mi=0 ,  Vi, the corresponding object system, a 
constrained Ising model, exhibits a phase transition with long-range order. 
As a consequence of this fact they are able to show the violation of the 
quasilocality condition. 

Of course, since the local magnetizations mi in the blocks B~ are fixed 
and all equal to zero, the value of h is totally irrelevant. On the other hand, 
if h is very large and, say, positive, the object system without any con- 
straint is almost Bernoulli with a high probability to have an individual 
spin equal to + 1 and the configuration with m~=0, Vi, is expected to be 
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very unlikely and, in a sense, irrelevant. Probably the weaker condition of 
almost sure quasilocality introduced in ref. 8 is satisfied in that situation. 
Moreover, even though v is not Gibbsian, it could have nice properties and 
its non-Gibbsianness could be unstable with respect to small changes. The 
situation could be similar to the previously mentioned phenomenon dis- 
covered by Lorinczi and Vande Velde for the decimation applied to the 
measure appearing in the Schonmann example. 

It is interesting now to discuss in some detail one of the main ideas 
contained in ref. 2, which is, in a sense, at the basis of the present paper. 
We will consider the block averaging transformation we have just discussed 
and apply it to the Ising model Gibbs measure #p.h. The authors of ref. 2 
are concerned, in particular, with the most interesting example where h = 0 
and [3 = [3,., i.e., the system is at the critical point. They show that, at least 
formally, it is possible to compute the renormalized potential and to show 
that it is absolutely summable, provided the constrained Ising model with 
all the mi = 0, Vi, is above its critical temperature. 

To be more precise, let H(r)({mj}) be the renormalized Hamiltonian 
corresponding to the renormalized measure v({m~}) s . = T(2)pp. h, suppose we 
extract from H(r)({mi}) all the many-body potentials q~A({mi}i~A) for any 
finite set A of blocks B~. The authors of ref. 2 show that all the ~A's 
can be expressed as thermal averages of suitable local observabes with 
respect to the Gibbs measure corresponding to an auxiliary intermediate 
Hamiltonian, which we call H(6)(S). Now, H(6)(S) corresponds to the 
constrained Ising model with all the mi's set equal to zero. The new (inter- 
mediate) local variables St, defined for any block B~, take values in the 
finite space, containing six states, corresponding to the six spin-a con- 
figurations in Bi such that Z.,-~ B, ax = 0. 

The starting point of the present paper is to try to show rigorously, in 
a strong sense, that the auxiliary model with Hamiltonian H(6)(S) does not 
undergo a phase transition at [3= [3,.. A priori there are no reasons, as 
will be clear from the discussion in the following sections, for the critical 
temperature to decrease after the introduction of additional constraints to 
a spin model. We will show, for example, that, as a consequence of a 
remark due to Kasteleyn, a particular constrained model obtained from the 
Ising zero-field model has exactly the same critical temperature as the 
original Ising model! 

In particular," to detect the absence of phase transition, we will use the 
idea of exploiting a finite-size condition which goes back to Dobrushin and 
Shlosman) 4-6) The basic point is that if one is able to verify a condition 
involving mixing properties of (finite-volume) Gibbs measures in a suitable 
set of finite regions, then one can deduce nice properties (typical of the one- 
phase region) for the infinite-volume system. That can be done, for example, 
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by using a computer. One can show, for example, uniqueness of the 
infinite-volume Gibbs measure, analyticity of the infinite-volume thermo- 
dynamic and correlation functions, and exponential decay of truncated 
correlations. In refs. 4--6 the authors avoid the use of cluster expansion; in 
refs. 5 and 6 they use conditions referring to arbitrary shapes. 

In ref. 4 the authors introduce a somehow weak condition implying 
only uniqueness of the infinite-volume Gibbs state and some decay proper- 
ties of the infinite-volume truncated correlations. This condition refers to a 
region V c c  Z d and is usually called DSU(V) from Dobrushin-Shlosman 
uniqueness condition [see (19), (20) below]. In refs. 5 and 6 they treat the 
so-called completely analytical interactions, proving, on the basis of a 
stronger condition, much stronger results, in particular uniform analyticity 
and exponential decay of truncated correlations f o r  any finite or infinite 
volume A with constants uniform in A. 

Olivieri and Picco ~22"23~ consider similar finite-size conditions, but only 
for sufficiently regular regions, and get similar results of strong type (such 
as Dobrushin-Shlosman complete analyticity) by using a block decimation 
procedure and the theory of the cluster expansion. In a series of papers 
Martinelli and Olivieri ~7-2~ developed a critical analysis of the known 
finite-size conditions, getting new results both for the equilibrium (Gibbs 
state) and for the nonequilibrium (Glauber dynamics) situation. The theory 
developed in refs. 17-19 allows, contrary to the Dobrushin-Shlosman 
analysis, the treatment, for quite general lattice systems, of almost the whole 
one-phase region (see, in particular, ref. 18 for more details). 

In a recent paper Martinelli et al. I'-~l showed that, in two dimensions, 
two finite-volume mixing conditions of a priori different strength called, 
respectively, weak mixing (WM) and strong mixing (SM) conditions, are 
in fact equivalent for sufficiently regular domains A (see ref. 21 for more 
details). In ref. 4 the authors show that if there exists a region V c c Z  a 
such that their finite-size condition DSU(V) is satisfied, then weak mixing 
holds for any finite or infinite A c Z a. Then, combining the results in ref. 4 
with the ones in ref. 21, one gets that in two dimensions, if there exists a 
finite region V c c Z  2 such that DSU(V) is satisfied for the constrained 
Ising system with Hamiltonian HI61(S), then, for a large class of regular 
domains, including, for instance, any cube, the strong mixing condition is 
satisfied for this constrained system. 

From strong mixing, using the results obtained in refs. 22 and 23, 
one can easily make completely rigorous the above-mentioned argument 
introduced by Cassandro and Gallavotti, and compute the renoramized 
potentials as convergent series via the cluster expansions. In this way, after 
proving DSU(V), the Gibbsianness of the renormalized measure would be 
proven in the strongest possible sense. 
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3. DEFINIT ION OF THE 
D Y N A M I C S  

In the following we will 
we are going to discuss: the 
models obtained from the 
restrictions. 

MODELS A N D  OF THE HEAT BATH 

give precise definitions about the models that 
usual 2D Ising model and some "restricted" 
Ising model by imposing some "extensive" 

Suppose we partition Z 2 into 2 x 2 squared blocks Bi, each containing 
4 sites. Each block B~ can be characterized by the coordinates of its lower 
left-hand site y~; namely B~=B,,,, where yi=2xi,  x i ~ Z  2, and for x =  
(x~l, xl2~) ~ Z 2, 

Bz~= { z ~ Z  2 : 2x~J~<.z~J) <2(xUJ + 1) , j=  1, 2} 

The formal Hamiltonian associated to the usual Ising model in zero 
magnetic field is given by 

H 'Si"g =- - -  ~ a.,.o-.,. ( 2 )  
(x, .v) 

where the sum runs over the pairs of nearest-neighbor sites in Z 2, and 
~,.~ {-1,  +l}. 

In the following we will consider a system enclosed in a finite squared 
region A with various boundary conditions; if not explicitly specified, it will 
be understood that the boundary conditions are periodic. 

In the original Ising model there are, in each block B/, 16 allowed con- 
figurations. Instead of the original or; variables to describe such configura- 
tions, we can use the block variables, say Sic {1 ..... 16}. In each block 
there will be a self-interaction and the mutual interaction between blocks 
deriving from (2) is again of nearest-neighbor type. The Hamiltonian of the 
Ising model, expressed in terms of block variables St, will be denoted by 
H(161(S )  -_ HIsing(o-).  

We will consider a modified model in which in each block Bi the sum 
m~=S.,.~B, ax is constrained to be zero. Now the block variables St will 
assume only 6 different values, corresponding to the following six block 
configurations: 

The corresponding Hamiltonian will be denoted by H(6)(S). 
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It is easy to convince oneself that the model with Hamiltonian H(6)(S) 
has four periodic ground states, tT~ The first one is given by 

+ + + + + + + + +  

(4) 

+ + + + + + + + +  

The second one is obtained from the first one by interchanging the + with 
the - ;  the last two ground states are obtained from the first two by inter- 
changing the rows with the columns. Note that the last two block con- 
figurations in (3) are quite different from the first four; in fact they are the 
only ones that carry a nonzero internal energy and they are absent from 
the T = 0  ground-state structure. We call them turnons, since, as we will 
see, they play an important role by allowing the layered ground states to 
break and mix, destroying long-range order. They are 

[-+ :] E: +-] 
By further restricting the allowed block configurations so as to forbid the 
presence of turnons, we define a new model whose Hamiltonian will be 
denoted by H(4)(S). 

In the following we shall denote the three models introduced before by 
Jl"l ,  with n = 4 ,  6, 16. In Section 3.1 we show that j<4~ with periodic 
boundary conditions is exactly equivalent to two uncoupled Ising models 
(in a smaller volume); hence its critical temperature is exactly the same as 
in j(~6~. 

We have studied the three models J<"~ by a Monte Carlo procedure, 
based on a suitable heat bath dynamics, whose invariant distribution is the 
finite-volume Gibbs measure. This dynamics has been used to compute 
mean values (with respect to the Gibbs measure) of some relevant observ- 
ables as time averages; the mean value will be denoted by <-> in the 
following. 

We have built a discrete-time heat bath dynamics based on locally 
equilibrating the S+ block variables. We suppose that A is a cube of even 
side size, so that it can be exactly partitioned into N(A) Bi blocks, ordered 
in a lexicographic way, and we define O~'~= {I ..... n} N~A~. The dynamics in 
a finite volume A is given by a Markov chain defined below. 

We perform a complete update of all the N(A) block variables by suc- 
cessively updating each one of them. For any i =  1 ..... N(A), we choose at 
random the new block configuration S~ in Bi, given the configuration 
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C ~ . N ( A ) i n  A, according to the equilibrium Gibbs measure in B; with Sle~ ~ J k J k =  1 

boundary conditions (B'i= A\Bi). The related transition probability in the 
.p-f,o model is then given by 

expE--flH~"I(S; I SB;)] 
pI'o(S ~ S')_ 

Y~;=~ exp[-flH~"l(ST I SB;)] 

This is the most efficient method as far as local updates of block variables 
are concerned (since locally we bring at equilibrium the basic block) and 
is implemented by means of a simple lookup table. It is straightforward to 
build up the dynamics so that one can move from one model to another 
simply by changing the number of allowed states [the six blocks of (3) 
are stored in the first six positions of the tables, with the two turnons in 
positions 5 and 6]. 

In order to characterize the critical point of the system we computed 
two different quantities. First we considered the specific heat CA as defined 
from the equilibrium energy fluctuations: 

CA=IA] ' f l 2 ( ( H Z ) - - ( H )  2) (6) 

We also considered a correlation length ~ defined by measuring zero- 
momentum correlation functions. We define the sums over planes 

L 

,~(t)-- ~. ~rcr.s I (7) 
s = l  

where x =  (x II), x 12~) - ( t ,  s), and the correlations 

1 L - - t  

G(t)- iL_t  I ~ (r~(to)~(to+t)) (8) 
to= 1 

A t-dependent correlation length (which we will plot for t = 5, where we get 
a fair estimate for its limit as t ---, ~ )  can be defined by 

~ ( t ) - [ l o g  G(t) 1-1 
G(--~- 1)J (9) 

For the constrained models, which have a pathological behavior at odd 
separations, we found it practical to define the correlation length by a 
distance 2 ratio 

F1 G(t) 3-' 
r = L~,og ~ -~+2)  j (10) 

Note that in the j~161 model ~(t) coincides with ~2~(t) for t-~ c~. 
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Four-State Restriction and Full Ising Model:  Proof of the 
Equivalence 

Let us denote by ~z, the family of 2 x 2 blocks partitioning the cube 
of (even) side size L and {S~},,~s the generic configuration of the ,~(4) 
model. We have 

H~4)(S) = 2 w(S=, S/1 ) (11) 
(~,3> 

where (c~,/?) denotes a pair of nearest-neighbor blocks and w(s,, s#)is the 
interaction energy between the two blocks (the self-interaction vanishes). 

We want to show that it is possible to associate to each block e an 
invertible map r S~ ~ (p~, r , ) e  { - 1, + 1 }2, so that, for any pair (e , /~)  
and any choice of So, Sty, 

w(S~, Sty) = p~,pp + "G r;; (12) 

We first observe that all four block configurations are of the form 

I 0"1 0"2 ] (13) 
- - G  2 --G I 

Hence there is a simple way to define ~ on the blocks contained in a 4 x 4 
square, so that (12) is verified at least for the blocks in the square. This 
definition can be visualized in the following picture: 

--P2 - - %  

P2 ~'2 r3 P3 
(14) 

--z l  --Pl --P4 --'15"4 

Moreover, if L is a multiple of 4, there is a partition of the lattice into 4 x 4 
squares and it is immediate to check that (12) is satisfied for all pairs 
(c~, p )  if ~b, is defined in each 4 x 4 square as in (14), by periodic extension. 

To complete the proof it is sufficient to observe that (12) implies the 
following identity for the partition functions: 

z j,4, L(/3)= z j . 6 ,  L/_.(/3) 2 (15) 

The model .j141 has four ground states, exactly coinciding with the 
ones of ,.r (the turnons in this case are absent at T =  0). These four states 
correspond, via the map ~ ,  to the four ground states of the two inde- 
pendent Ising models (all +1 or all - 1  for each one of the two Ising 
systems). 
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4. THE D O B R U S H I N - S H L O S M A N  UNIQUENESS CONDIT ION 

Let us define the variation distance between two probability measures 
/~ and/~2 on a finite set Y a s  4 

Var( /~ , , /~z )= �89  ~ I # , ( Y ) - # 2 ( Y ) I  = sup I ~ , ( X ) - ~ 2 ( X ) l  
v ~  Y X ~  Y 

(16) 

Given a metric p ( . , - )  on Y, the Kantorovich-Rubinstein-Ornstein- 
Vassersteh7 distance with respect to p between two probability measures 
p~, ll~ on Y, which we denote by Vp(l~, 1~2), is defined as 

Vp(#,,  It2) = inf ~ p(y,y')/t(y,y') (17) 
I IE  K( I I I ' I t 2 )  I' V'E Y 

where K(/~t, Fl2) is the set of joint representations o f / q  and/ t2 ,  namely the 
set of measures on the Cartesian product  Y x Y whose marginals with 
respect to the factors are, respectively, given by kq and/t2.  This means that, 
V B ~  Y: 

p(Bx Y)= ~ p(y,y')=It,(B) 
.I' E B, y '  E Y 

~(YxB)= ~ ~(y,y')=a_,(B) 
y,u Y.y '~  B 

For the particular case 

{10 iff Y ~ Y '  p ( v , y ' )  = (18) 
" otherwise 

it is possible to show that V,(la~, It2) coincides with the variation distance 
Var(p~,/~2). 

A result by Dobrushin and Shlosman 14) concerning the uniqueness of the 
infinite-volume Gibbs measures generalizes previous results by Dobrushin 
based on a "one-point  condition" on Gibbs conditional distributions (see 
ref. 3). 

Let us consider a spin system on Z a with single-spin space 5 a and 
finite-range interaction. We generalize in an obvious way the notat ion 
introduced in Section 2. Given a metric p on 5 p, we associate to it a metric 
PA on s -- 5 aA, for any A c c  Z a, by defining 

p . (S . ,  s'~)= Y~ p(S.,., s.'o 
A" ~ /I 

4 A much more general framework can also be considered. 

822/78/3-4-6 
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We say that condition DSUp(A, 6) is satisfied if there exist a finite set 
A c c  Z d and a 6 > 0 such that the following is true: for any y �9 0+A (the 
set of points outside A whose spins interact with the spins inside A) there 
is a positive number Cry such that, for any pair of boundary conditions z, 
z' �9 ~ with ~i~ = zx, Vx :~ y: 

and 

! VpA(/.ITA, /..l~i ) ~ O~yp(Ty, ~y) (19) 

Z ~v~6 IAI (20) 
yed+A 

where/~] is the Gibbs measure in A with boundary conditions ~ outside A. 
We say that DSU(A, 6) is satisfied if (19) and (20) hold with p given 
by (18). 

T h e o r e m  1 (Dobrushin-Shlosmanl4)). Let DSUp(A, 6) be satisfied 
for some p, A, and 6 < 1 ;  then 3C>0 ,  ~,>0 such that condition 
WMp(A, C, ~) holds for every A. 

By WMp(A, C, y) we mean a particular mixing property o f / ~  saying 
that the influence at x �9 A of a change in the conditioning spins v decays 
a s  

Ce -~' dist{x, OA ) 

See ref. 18 for a precise definition. 
Theorem 1 implies, in particular, the uniqueness of infinite-volume 

Gibbs measures. Then (19), (20) provide an example of a finite-size condi- 
tion: one supposes that some properties of a f in i te -volume Gibbs measure 
are true and then deduces properties of infinite-volume distributions. 

We observe now that 

T 1"' r 

N E A  

where #.~ is the probability distribution of the spin sx with respect to the 
measure tt~. Hence, if p is given by (18), then 

V,~(/~],/~)>~ ~ Var(/z.].,/1.~) 
x e  A 
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It follows that, for given A, DSU(A, 6) is certainly not satisfied for any 
< 1, provided that 

sup ~ Var(#~,p~)~> IAI 
10+AI , VY ec3+A 

r t ' :~=tx ,VX~y  xeA 

This observation will be used in our numerical calculations on model j~6) 
in the following way. We try to find a "good" lower bound for the quantity 

sup sup ~ Var(/l;, p.~') (21) 
Y~O+A1- "r,r':rx=rx,VXr XEAL 

by calculating numerically ~_,.~ALVar(p.~,p].') for a "large" number of 
choices of),, r, r '  and by considering the maximum among these numbers, 
which we call Ac. Here AL denotes a cube of side size L in Z 2 and each 
point of AL represents a 2 x2  block; hence A L corresponds to a cube of 
side size 2L in the original lattice. 

We consider a "reasonable" indication that DSU(A, 6) is satisfied for 
A large enough if 'JL IO+AL[/[ALI is decreasing in L and there exists and 
Lr such that 

JIlL ~ ALl2 [O +A L/2I = A L/2 8 [ALl2[ ~ < 1 ,  L>Lr (22) 

Of course, checking inequality (22) does not imply the validity of the 
Dobrushin-Shlosman uniqueness condition. Nevertheless the two quan- 
tities -///L and 

1 
- -  Z sup p~(/~,/1~) 
IAI .,,~0+AL �9 C:~,.=~; V.,-~ v 

are, in our opinion, strictly related; hence we think that the validity of 
inequality (22) is a good test for the absence of long-range order. 

We have analyzed, in particular, the equivalent of"Dobrushin bound- 
ary conditions" for our model; namely conditions such that on the upper 
half of the boundary there is a configuration tending to create in the bulk 
one of the coexisting phases, whereas on the lower half there is a configura- 
tion favoring another, different, phase. We did not find any particular 
instability with respect to a local change of the conditioning spins; in other 
words, also considering these boundary conditions does not change the 
estimate AL of the quantity (21). 
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5. N U M E R I C A L  RESULTS:  THE P H A S E  T R A N S I T I O N  

We present here a first set of numerical results which give numerical 
evidence that the j~6~ model undergoes a phase transition at a temperature 

TI/"~ < rl:'"~ 

The correlation length of the constrained model at the critical point of the 
full Ising model is a finite, reasonably small number, which we estimate. 

This numerical evidence is not meant to constitute a large-scale 
simulation. We do not try here to estimate critical exponents or to deter- 
mine with high precision the position of critical points (for large-scale 
simulations of the 2D Ising model see, for example, ref. 12 and references 
therein). The main point here is to show in a nonambiguous manner 
that the two critical temperatures are different and that the correlation 
length of the constrained model at the critical point of the Ising model is 
finite. 

Our results have been obtained for cubes containing 400 z lattice points 
(i.e., the region AL with L= 200 ,  according to the notation of Section 4). 
In the case of model jl61 we have performed 2 x l0 s full sweeps (that is, full 
update of all lattice sites) of our heat bath block algorithm per each value 
of the inverse temperature ft. In the case of ,~r and jl~61 models we have 
used 105 sweeps per each value of ft. We have simulated smaller volumes to 
check that everything was well compatible with the expected finite-size 
behavior (but we will not report in detail these data). All the runs discussed 
in this section use periodic boundary conditions. 

Let us start by discussing our simulations for the full 2D Ising model. 
As we said, very large scale simulations exist t~2~ and the results we are 
presenting here are just meant to set the frame for showing numerically the 
different behavior of the two relevant models. So we have simulated the full 
2D Ising model in the same conditions that we have used to study the 
constrained ,,r model. 

In Fig. ! we show the specific heat of the model. The point closer to 
criticality is the one at /3=0.4400 (as is fortunately obvious from the 
picture). Here, as well as in the following, the point size is of the order of 
magnitude of the statistical error, except for the point closer to criticality. 
The mild (logarithmic) divergence of the specific heat is at an inverse 
critical temperature which we can estimate from our data to be at /~c = 
0.440-t-0.001, in agreement with the known exact value. 

In Fig. 2 we show the correlation length ~=~(5 )  [-see (9)], which 
diverges at T c with a critical exponent v = 1. We plot ~ for ~ ,~ L. 

The second set of numerical simulations refer to model ~6 j .  We show 
respectively the specific heat and the correlation length in Figs. 3 and 4. 
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0 . 6  

-7" 
0 . 4  

0 I , , , I , , I , t I , i , 

0 . 30  0 .4  0 .42  0 .44  0 .46  

P 

Fig. 1. The specific heat (as computed from energy fluctuations) as a function of fl for the 
lsing model. 

These two figures strongly suggest that TIJ ~~ --cTIJ"6~)'. the critical 
temperature of the constrained model is smaller than the one of the original 
model. At the critical temperature of the Ising model the constrained model 
does not show a critical behavior. We estimate 

fll:r6'l = 0.4775 ___ 0.0025 (23) 

Fig. 2. 

30 

._: 
.g. 2O 

.30  0 . 4  0 , 4 2  0 ,44  

B 

The correlation length ~ as a function of fl for the Ising model. 
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0 . 8  I ' ' ' I ' ' ' I ' ' ' I ' ' ' I ' ' ' I 

0 . 6  

- -  O . 4  

Q.2 

o ~ ' ' ' i , , , i �9 , , i , , , i , , , i 

0 . 4 2  0 . 4 4  0 . 4 6  0 . 4 8  0 . 5  0 . 5 2  

# 

Ising model, o, . As in Fig. 1, but for the six-block state constrained �9 d(6) Fig. 3. 

The  cor re la t ion  length  of mode l  , . ~ ( 6 )  is finite at  the crit ical t empera -  
ture of the Is ing model ;  we es t imate  [see (10) for the def in i t ion  a n d  note  
that  it is defined in uni ts  of  the or ig ina l  la t t ice] :  

{{2~-~(~}(5) "~ 11.5-t-0.5 if fl -/3('~*6~)-rc (24) 

3 O  

. ~  2 O  

I I . '  

0 

0 . 4 2  

I I 

0 . 4 4  0 . 4 6  

.e 

Fig. 4. As in Fig. 2, but for the six-block state constrained Ising model, jt6~. 
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0.5 

"o~ 0.3 

0,2 

o 
0.38 0.4 0.12 0.44 0.46 

Fig. 5. As in Fig. 1, but for the four-block state constrained Ising model, j(4). 

This is in agreement with the numerical calculations related to the DSU 
condition that we shall discuss in the following section. In fact we find that 
inequality (22) of Section 4 is satisfied for L > Lc, with Lc "~ 5r 

As we have already said, we have also simulated the model restricted 
to four states (by forbidding turnons), which is equivalent to two 
decoupled Ising models. In Fig. 5 and 6 we show the specific heat and the 

Fig. 6. 

40 

.3 

4 , I I 
.38 O. 0.42 0.44 

P 

As in Fig. 2, but for the four-block state constrained Ising model, j ( 4 ) .  
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0.245 

o o 0.24 

6. 

I , t , I , , , I , , , I i , , I 5 , , i I 

0.42 0.44 0 .46 0.48 o. 0 .52 

P 

a - ( 6 )  Fig. 7. Plot of P as a function of # for the six-block state model, ,.- . 

( j 0 6 ) )  
corre la t ion  length;  they clearly show crit icali ty at T(J(4))= T,. . No te  
that  the cor re la t ion  length is larger t han  in mode l  j(16),  as one  expects, 
because  the effective latt ice spac ing  of the two i n d e p e n d e n t  Is ing models  is 
half  the spacing in the or ig inal  lattice. The  rat io be tween  the two correla-  
t ions  lengths  shou ld  indeed  be exactly 2 if we could  calcula te  the l imit  of  
~ ( 2 ) ( t )  a s  t --+ o o .  

Fig. 8. 

i , , , i . . , i ' . . i . , . i . , , i 

0.1 

f f  
o .o5 

o �9 �9 �9 �9 �9 �9 �9 ~ �9 �9 
i , , , i , , , i . , . z , , , j , , , I 

0.42 0.44 0 ,46 0.48 0.5 0.52 
# 

Plot of a as a function of fl for the six-block state mo_e,cll j.~(61. 
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In order to better characterize the nature of the transition for the 
constrained model j(6~ we will present some more data. As discussed in 
Section 3, at T = 0  the j (6)  model has four ground states, with broken 
translational symmetry. We define p;, i =  1 ..... 4, as the projection of a 
given configuration over the ith ground state (we count the number of 
blocks which fit the ground-state pattern and normalize with the total 
number of blocks). We define 

- -  1 
P = ~(P~ + P2 + P3 + P4) (25) 

Let us recall again that the ground states do not include turnons. The 
turnon density is ( 1 - 4 p ) ,  and tends to zero for f l ~  or. In Fig. 7 we plot 
p as a function of T for model j(61. The density of turnons at fl = 0.4407, 
the critical point of the full 2D Ising model, is close to 0.06, and determines 
the finite correlation length. 

Spontaneous symmetry breaking is signaled by the nonvanishing, in 
the infinite-volume limit, of cr defined by 

4 

a=�88 ~ (p,-p); (26) 
i = 1  

In the symmetric phase, a--+ 0 in the infinite-volume limit. In the broken 
phase the system aligns in one of the four ground states (tunneling, at finite 
volume, among the different layered ground states), and a is nonzero. We 
plot a in Fig. 8. The location of the critical point is signaled with high 
precision from the drastic change in a. 

6. N U M E R I C A L  R E S U L T S :  T H E  D O B R U S H I N - S H L O S M A N  
C O N D I T I O N  

As discussed at the end of Section 4, we have used the inequality (22) 
to obtain some reasonable insight about the validity of the Dobrushin-  
Shlosman uniqueness condition, which is too difficult to verify also numeri- 
cally for volumes as large as needed in our case. However, even the task 
of checking numerically the inequality (22) is indeed a difficult one with 
respect to the calculations of the previous section. In fact in this case one 
has to control the whole distribution. This is quite difficult compared with 
the simple task of computing averages of some observable quantities. The 
internal energy, for example, is peaked close to the expectation value; 
hence, in order to compute its expectation value, one just needs to explore 
a very restricted part of the phase space. A computation of JgL [see (22)-] 
demands, on the contrary, as we will see, a very large statistics. 
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3 

g 

E 

, , j l  . . . . / / / / / 1 " / ' ' ' 1  

/ f ~ 

, L , I , , , , I , , , i I 
0.005 0.01 0.015 

Iterntion~ -I~ 

Fig. 9. Plot of .At L as a function of the inverse square root of the number of sweeps, for 
different lattice sizes. Straight lines are best linear fits. Empty triangles for L=8, filled 
triangles for L = 16, crosses for L = 32, and filled dots for L = 64. 

In our simulations we considered a sequence of cubes of side size L 
and, after selecting L and the number  I of Monte Carlo sweeps (we define 
a Monte  Carlo sweep as the update of all lattice sites), we chose N different 
random boundary  conditions by assigning to the boundary  sites the value 
+ or - with equal probability. We shall call Zk, k =  1,.. . ,N, these 
boundary  conditions. 

For  each Zk we selected (randomly) a boundary  pair of adjacent sites 
belonging to the same boundary  block and considered the four boundary  
conditions ~., j =  1 ..... 4, differing from each other only in the chosen 
boundary  block, by changing in all possible ways the values of the two 
spins. We did four Monte Carlo runs with the four boundary  conditions 
and, during these runs, recorded the number  of times each block variable 
visited each of the six allowed states, by constructing 

N,~. (i, S;) (27) 

where j  ranges over the four different values, i ranges over the (L/2) x (L/2) 
blocks, and S~ ranges over the six allowed block configurations. N is 
normalized in such a way that 

N~(i, S,)= 1 (28) 
Si 
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; 1 

. . . .  I . . . .  I . . . .  I 

I , = , , I , , , 

0 . 0 0 5  0 . 0 ;  

ItEration, "t/I 

Fig. 10. As in Fig. 9, but for "~/L. 

I 
0 . 0 1 5  

The quanti ty ALl2 of (22) was then calculated as 

f _ ~ 
m a x  A L/2=- m a x  

k =  I , . . . ,N  j ~ l ; j , j =  1,.. . ,4 I 

In our  simulations we used L = 8 ,  16, 32, 64, N of order 100 and 
values of I ranging from 4000 to 4 x 106 (for the largest value of L). 

In Fig. 9 we plot the quanti ty J/L of (22) as a function of the inverse 
square root  of the run length for different lattice sizes and number  of 
iterations. The straight lines are our best linear fit, which turns out to be 
the right ansatz for the observed behavior.  

The inequality (22) is satisfied only on the 642 lattice and is violated 
on smaller lattices. Our  best fits give 

17 
~'8 = 2.10 + - -  

83 
Jt'~6 = 1.83 + 

229 
~ =  1.32 + ~  

706 
J ~ 6 4  = 0 . 5 8  -[- 

(30) 
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There is indeed a big contribution due to the fact that we are adding a 
finite number of positive random numbers. Only in the limit of a large 
number of iterations, I ~  ~ ,  does this contribution go to zero. In order to 
minimize this effect we have also run simulations with the same boundary 
condition rk for each k. The average value of the difference 

N~k(t, Si)] 
i, Si 

obtained in these conditions has been subtracted from ~'L in order to 
define J~L- The contribution we have subtracted from -gL goes to zero in 
the limit I ~  ~ ,  making JgL a good estimator for the inequality (22). We 
plot ./fit_ in Fig. 10. Our best fits for ~//7 L give 

17 
~,~8 = 2.11 - - -  

4 . 0  
,./~e,6 = 1 . 8 3 - -  

12.0 
~3z = 1.31 + - -  

"/~64 = 0.60 + 20~// 

(31) 

The constant term coincides, as it should, with the one we get for ..#, with 
very good precision. On the contrary, slopes are smaller, indicating that 
is, as expected, a better estimator than ./g when using a finite number of 
iterations. 

7. C O N C L U S I O N S  

From the numerical results on specific heat and correlation length, 
which are based on "traditional" numerical methods to detect a (second- 
order) phase transition, we can be reasonably sure that, indeed, the critical 
temperature of the j~6~ model is strictly less than T~,? ~"g. The remark on the 
isomorphism between ,r and the full Ising model , j~ '[16) shows that one 
cannot a priori expect any monotonicity property of critical temperatures 
in terms of imposed constraints. Our numerical results indicate that, by 
imposing the constraint m,. = 0, VBi, one decreases the critical temperature, 
whereas by enhancing again the constraint via the further elimination of 
the turnons, one increases the critical temperature since it goes back 
to TI~ sing. 
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To analyze theoretically this apparently strange behavior it seems 
useful to use some generalized form of Fortuin-Kasteleyn representation of 
the Ising model sufficiently "elastic" to include, in the same setup of 
random-cluster models, the three models j(16), j(6), or that we have 
considered.(11) 

On the other hand, to implement rigorously the Cassandro-Gallavotti 
program one needs a s t r o n g  notion of absence of phase transition, namely 
to verify some strong mixing condition SM. 

We say that a Gibbs measure /~  in A with r boundary conditions 
outside A satisfies a s t r o n g  m i x i n g  c o n d i t i o n  SM(A, C, 7) if the influence at 
x ~ A  of a l o c a l  change in y~  A" of the value of the conditioning spin 
configuration r decays as 

C e  - ~' Ix - .,,I 

Of course SM(A, C, 7) implies WM(A, C, ~,) (see Section4); moreover, 
SM(A, C, 7) is interesting when it is valid for a class of volumes A invading 
Z a with C and y independent of A. 

As we said in Section 2, in ref. 2 it is proven that, in two dimensions, 
WM implies SM at least for sufficiently regular regions A. SM would be 
certainly largely sufficient to compute, via the Cassandro-Gallavotti 
method, the renormalized potentials, whereas, in general, WM alone will 
not. 

In Section 6 we analyzed a sort of lower bound (involving variation 
distance) for the quantity appearing in the Dobrushin-Shlosman unique- 
ness condition (implying WM and so, since we are in 2D, SM). This is only 
an (almost) necessary condition to be verified in order to satisfy the true 
condition DSU. It only gives an indication in the sense of the possibility to 
verify DSU (which involves the Vasserstein distance). 

It is clear that one needs to consider squared regions containing about 
30 x 30 blocks. This rules out, at least with present computers, the possi- 
bility of a computer-assisted proof. Then it would be important to be able 
to find a "Monte Carlo" method to "measure" the quantity (Vasserstein 
distance) appearing in DSU. 

It would also be interesting, in general, to find an algorithm, easily 
implementable in a computer, to evaluate the Vasserstein distance between 
two Gibbs measures with different boundary conditions. This will be the 
object of further investigations. 
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